Avoiding Slips, Trips, Falls

Did You Know?

- Slips and falls account for over 1 million emergency room visits annually
- Fractures are the most serious consequences of falls and occur in 5% of all people who fall
- Slips and falls represent the primary cause of lost days from work
- Slips and falls are the leading cause of workers’ compensation claims and are the leading cause of occupational injury for people aged 55 years and older
- Floors and flooring materials contribute directly to more than 2 million fall injuries each year
- 85% of workers’ compensation claims are attributed to employees slipping on slick floors
- Compensation & medical costs associated with employee slip/fall accidents is approximately $70 billion annually
- 22% of slip and fall incidents resulted in more than 31 days away from work
- According to the U.S. Bureau of Labor Statistics [2009], the incidence rate of lost-workday injuries from slips, trips, and falls (STFs) on the same level in hospitals was 38.2 per 10,000 employees, which was 90% greater than the average rate for all other private industries combined (20.1 per 10,000 employees). STFs as a whole are the second most common cause of lost-workday injuries in hospitals.
- Slips, trips, and falls result in 17% of all nonfatal workplace injuries—the highest frequency of injury of any single regulated activity

Top 10 Slip, Trip and Fall Hazards

1. Contaminants on the floor
2. Poor drainage
3. Indoor walking surface irregularities
4. Outdoor walking surface irregularities
5. Weather Conditions
6. Inadequate lighting
7. Stairs and Handrails
8. Stepstools and Ladders
9. Trip hazards (clutter, loose cords, medical tubing)
10. Improper use of floor mats
What Can You Do?

Safety is everyone’s responsibility. Do your part!

1. Report and/or clean up spills immediately; if a spill can’t be cleaned up right away, place “wet floor” warning signs for others
2. Keep walkways and hallways free of debris, clutter and obstacles
3. Practice good housekeeping- remove trip hazards from your work area
4. Remove cables or cords that may pose a trip hazard
5. Keep cabinet doors and desk drawers shut when not in use
6. Make sure stairs are safe; use the handrail
7. Be mindful when walking- watch where you’re going, and wear comfortable, properly fitted shoes
8. Don’t carry loads that block your vision
9. Report uneven floor surfaces immediately
10. Report burnt-out light bulbs promptly

VENTURA COUNTY PUBLIC HEALTH DEPARTMENT SAFETY ALERT – NOVEL CORONAVIRUS

The Ventura County Public Health Department (VCPH) is working closely with the California Department of Public Health (CDPH) and the Centers for Disease Control (CDC) to prepare for and respond to the 2019 novel coronavirus outbreak.

There have been reports of two possible cases in Ventura County. Samples were taken from both patients and sent to the CDC. Results for one patient were negative for the novel coronavirus. The other results are pending. The patient is in isolation until the results are provided. There have been no confirmed cases in Ventura County. VCPH is communicating with local health care providers on how to safely and effectively evaluate ill people who have been to China. VCPH will continue to monitor the situation, work with partners to identify any possible cases, provide information and consultation to ensure that possible cases are managed safely, support laboratory testing, and implement recommendations from the CDC. Currently, the health risk from the novel coronavirus to the general public is low.

The types of symptoms caused by this virus are still being learned. Some patients have had mild symptoms while a small number have experienced more severe symptoms, and a few have died. Cases have been diagnosed in several countries in Asia. Three cases have been identified in California and two have been identified in Illinois. The three cases in California have been identified in Los Angeles County, Orange County and Santa Clara County.

Coronaviruses are a large group of viruses that are common among animals and humans. In rare cases, animal coronaviruses can be transmitted from animals to humans. The 2019 novel coronavirus is a newly discovered coronavirus that has not been previously detected in animals or humans. The source of the novel coronavirus is not yet known. Typically, human coronaviruses cause mild-to-moderate respiratory illness. Symptoms are very similar to the flu, including runny nose, headache, cough, sore throat, fever and shortness of breath.

Health care providers will assess patients, and if novel coronavirus infection is possible, they will contact the Communicable Disease division at VCPH. At this time, the only laboratory testing for the novel coronavirus is being done at the Centers for Disease Control and Prevention's (CDC) laboratory. If a patient is suspected to be infected with the novel coronavirus, public health agencies will work with health care providers to ensure CDC testing can be completed.
If you have recently traveled to China, and you have become ill with fever, cough or shortness of breath, call your health care provider. Please be sure to tell your health care provider about your travel history.

As with any virus, especially during the flu season, VCPH reminds you of steps you can take to protect your health and those around you:

- Wash hands with soap and water.
- Avoid touching eyes, nose or mouth with unwashed hands.
- Avoid close contact with people who are sick.
- If someone does become sick with respiratory symptoms like fever and cough, they should stay away from work, school or other people to avoid spreading illness.

For the most up to date information regarding the 2019 novel coronavirus, please visit www.cdc.gov/coronavirus/2019-ncov/index.html .

PREPARING YOUR LAB FOR AN EMERGENCY

Research labs are unique places that often have hazardous materials, equipment and/or processes that should be “made safe” prior to researchers exiting the lab in an emergency. Research lab emergency shutdown planning ensures the ongoing continuity of the research, the safety of lab building occupants and the safety of emergency responders who must enter the building and possibly the lab.

Depending upon the complexity of the lab, its processes, hazards and equipment, “making safe” the research could be as simple as shutting off equipment with a control switch or closing a fume-hood sash before leaving the lab, which takes little-to-no-time. However, hazardous chemicals or biologicals may need to be isolated or safely stored-away prior to evacuation. For complex equipment and associated lab processes, multiple utilities may need to be shut-off using automated emergency control-systems and pre-programmed shutdown sequencing to ensure safe-shut-down while lab users exit the building.

During emergency, time is critical and seconds can mean the difference between life and death. By planning for emergency and the need to evacuate your lab with the utmost of speed, you can minimize the potential for loss of critical research-data and equipment while ensuring researchers’ and emergency responders’ health and well-being. As a planning-target time frame, it should not take a single researcher working in a lab more than 30-seconds to “make safe” all lab equipment, processes and hazardous chemicals / biologicals prior to evacuating the lab. Contact EHS (5-2283) for collaborative safety engineering support should you determine your lab cannot be “made safe” and evacuated in under 30-seconds.

Here is a checklist that will help you prepare for an emergency in your lab:

Emergency Preparedness Checklist for Labs

- **Inventory physical, biological and chemical hazards** and determine how each should be dealt with during an emergency. Prioritize “making-safe” hazardous chemical storage, hazardous biological containment and hazardous processes safe shutdown. Also, prioritize maintaining egress pathways and adequate lighting along pathway to safety.

- **Assess hazardous chemicals and what must be done to “make them safe” prior to evacuating the lab.** Only use hazardous chemicals in the smallest-quantity needed for research-use during routine lab operations, and keep hazardous chemical reserves in safe-storage such as flammable or gas cabinets.
- **Assess lab equipment, biologicals containment and lab processes** for research-critical operations or high-hazard conditions that require biologicals-isolation or safe shutdown before the lab must be evacuated.

- **Develop Equipment/Process SOPs** for shutting down equipment or “making safe” hazardous chemicals, biologicals or processes prior to evacuation.

- **Train all lab users on the Lab Emergency SOPs** and document this training in lab manuals.

- **Label utility shut-off locations clearly** for the lab’s critical equipment which include compressed gas shut-off valves, process/cooling water valves, electrical knife switches or circuit breakers, steam valves, hydraulic system control valves, pressure bleed valves left opened, etc.

- **Do not rely on manual shutdown of critical systems** for complex research processes or equipment that could take more than 20 seconds, or more than 2-3 individual sequenced steps, to manually shutdown and make-safe. Instead, install Programmable logic Controllers and automated valves and switches to monitor safety-systems and control automatic shutdown sequencing in the event of emergency. Actuate automated shutdown sequences by hitting an emergency stop button located near the lab’s exit door.

- **Participate in emergency practice drills** as though there is a real emergency to determine if your lab’s emergency protocols and shut-down procedures are viable and to ensure lab safety during an emergency. Conduct a debriefing after the practice drill and modify lab SOPs and automated shutdown systems as needed to improve response and safety.

- **Ensure data security** and that all research data and research equipment designs are “backed-up” off-site in multiple copies of data-files stored in multiple locations should local research data-storage equipment be damaged/destroyed during an emergency. Automate this back-up process to ensure ongoing research-data security and safety, but keep critical research data-collection and control-equipment isolated from the internet if possible to limit potential damage from a virus or malware.

In the event of an emergency, rapidly assess the situation. If immediate evacuation is necessary, do so by simply shutting the fume-hood door, throwing a main power-switch, etc. and exiting the lab. If enough time to implement the lab’s 30-second or less emergency shutdown procedures is determined, do so and then evacuate to safety. If at any time should conditions change, or there is any question as to whether it is safe to continue emergency shutdown in the lab, evacuate to safety without hesitation. Remember to make your way to your lab building’s muster point for a head-count, and be available and ready to brief the Police, Fire and EMT responders at the muster point about the activities and processes in your lab.
Safety Spotlight

Department: Art

The Art department has performed a fantastic job of establishing an effective safety culture. This spring, in collaboration with Environmental, Health and Safety, it has successfully implemented a “lock-out/tag-out” system for power tools. In addition, it has designated several hazardous work areas in the Topanga studio by posting hazard-warning signs.

Congratulations to everyone!
The “EHS News” is a quarterly newsletter published by Environmental Health & Safety
Suggestions and comments are encouraged!

Environmental, Health & Safety is staffed by:

Peer Gerber
Director, Environmental Health & Safety
805-437-8847
peer.gerber@csuci.edu

Joyce Spencer
Health and Safety Manager
805-437-3922
joyce.spencer@csuci.edu

Derick Nguyen
Safety Coordinator
805-437-3369
derick.nguyen@csuci.edu

Derick Jaramillo
Chemical Hygiene and Laboratory Safety Specialist
805-437-8973
derick.jaramillo@csuci.edu